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The presence of lower cutoff in fiber threshold distribution may affect the failure properties of a bundle of
fibers subjected to external load. We investigate this possibility—both in an equal load sharing �ELS� model
and in a local load sharing �LLS� one using analytic as well as numerical methods. In the ELS model, the
critical strength gets modified and, beyond a certain lower cutoff level, the whole bundle fails instantly �brittle
failure� after the first fiber ruptures. Although the dynamic exponents for the order parameter, susceptibility,
and relaxation time remain unchanged, the avalanche size distribution shows a gradual deviation from the
mean field power law. A similar “instant failure” situation occurs in the LLS model at a lower cutoff level,
which reduces to that of the equivalent ELS model at higher �high enough� dimensions. Also, the system size
variation of the bundle’s strength and the avalanche statistics show strong dependence on the lower cutoff
level.
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I. INTRODUCTION

Critical behavior of the fracture-failure phenomena in dis-
ordered materials has attracted wide interest these days �1�.
Among several model studies, the fiber bundle models
�FBMs� capture almost correctly the collective static and dy-
namics of fracture failure in loaded materials. The two dif-
ferent versions of FBMs have been studied much. The equal
load sharing �ELS� model �2,3� considers democratic �equal�
sharing of applied load on the bundle, whereas in the local
load sharing �LLS� model �4,5�, only the nearest neighbors
support the terminal load �stress� of a failed fiber. Experi-
mentally it has been observed �6–8� that disordered material
under increasing load shows well-defined power laws in
terms of acoustic emissions prior to the global rupture. Such
a power law in burst avalanches has been achieved analyti-
cally �and verified through simulations� by Hemmer and
Hansen �9,10� in the ELS model. It has also been known for
several decades that the static ELS model has a critical point
�11–15�, i.e., at a critical strength ��c� the bundle shows a
phase transition from a state of partial failure �for ���c� to
the state of total failure �for ���c�. This failure dynamics
has been solved analytically �16,17�, which explores the
critical behavior through the power law variation of the order
parameter, susceptibility, and relaxation time. Also the mean-
field universality of the ELS model has been established re-
cently �18�. The extensive studies on the LLS model �4,5�
suggest that the strength goes to “zero” value as the bundle
size approaches infinity �19–21�, thus excluding the possibil-
ity of any critical behavior. Another important observation is
that no universal power law asymptotics exist for the ava-
lanche statistics �10� in the LLS model. Attempts have also
been made to study both the ELS and LLS models in a single
framework introducing adjustable load sharing parameter
�22–24� and a crossover from mean-field �ELS� to short-
range �LLS� behavior has been reported.

So far in the FBM studies, people mainly considered dif-
ferent fiber threshold distributions starting from zero thresh-
old. However, in reality every element �fiber� should have a
finite �nonzero� strength threshold due to the cohesive force
among the constituting molecules. Therefore the idea of a
lower cutoff in fiber threshold distribution would be most
welcome. Andersen et al. �13� considered first a lower cutoff
in fiber threshold distribution and established the “tricritical
behavior” in the mean-field �ELS� fiber bundle model. Such
distributions with lower cutoff have also been considered to
study the nonlinear response in the ELS mode �17� and to
establish the universal behavior �18� of ELS failure dynam-
ics. The exclusion of weaker fibers not only enhances the
ultimate strength of the bundle, it can affect the failure prop-
erties of the bundle. To investigate such possibilities, in the
present work we consider ELS and LLS models and proceed
through analytic as well as numerical methods.

We organize this report as follows: After this brief intro-
duction we study the effect of lower cutoff in the ELS model
�Sec. II� and in the LLS model �Sec. III�. The importance of
such study and the physical significance of the observed re-
sults are discussed in the conclusion �Sec. IV�. In the Appen-
dix we apply our analytic formulations in two different situ-
ations of fiber threshold distribution.

II. ELS MODEL

A. Solutions of the recursive dynamics for equal load
increment

We consider a fiber bundle model having N parallel fibers
subjected to an external load or stress �load per fiber�. The
threshold strength of each fiber is determined by the stress
value ��th� it can bear, and beyond which it fails. We con-
sider fiber threshold distribution to have a lower cutoff ��L�,
i.e., a randomly distributed normalized density ���th� has
been chosen within the interval �L and 1 such that
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�
�L

1

���th�d�th = 1. �1�

We follow stepwise equal load increment �16,17� until the
total failure of the bundle. The breaking dynamics starts
when an initial stress � ���L� is applied on the bundle. Fi-
bers having strength less than � fail instantly, reducing the
number of intact fibers and these fibers have to bear the
applied load �ELS rule�. Hence the effective stress �on intact
fibers� increases and this compels some more fibers to break.
These two sequential operations, the stress redistribution and
further breaking of fibers, continue until an equilibrium is
reached, where either the surviving fibers are strong enough
to bear the applied load or all fibers fail.

The breaking dynamics can be represented by a recursion
relation �16–18� in discrete time steps:

Ut+1 = 1 − P��/Ut�, U0 = 1; �2�

where Ut is the fraction of total fibers that survive after time
step t and P��t� is the cumulative distribution of correspond-
ing density ���th�,

P��t� = �
�L

�t

���th�d�th. �3�

The time step indicates the number of stress redistributions at
a fixed applied load.

At the equilibrium or steady state we get Ut+1=Ut�U*.
This is a fixed point of the recursive dynamics and Eq. �2�
can be solved at the fixed point for some particular strength
distribution.

We choose the uniform density of fiber strength threshold
having a lower cutoff �Fig. 1� to solve the recursive failure
dynamics of the ELS model. Thus ���th� has the form

���th� =
1

1 − �L
, �L � �th � 1. �4�

The cumulative distribution becomes

P��t� = �
�L

�t

���th�d�th =
��t − �L�
�1 − �L�

. �5�

Therefore Ut follows a simple recursion relation:

Ut+1 =
1

1 − �L
�1 −

�

Ut
� , �6�

which has fixed points �17,18�

U*��� =
1

2�1 − �L�	1 ± �1 −
�

�c
�1/2
 , �7�

where

�c =
1

4�1 − �L�
. �8�

Beyond this critical strength ��c� the whole bundle fails in-
stantly. The solution with �+� sign is the stable one, whereas
the one with �−� sign gives unstable solution �17,18�.

It is obvious that the critical strength ��c� cannot be less
than �L. As �c is a critical point (see Refs. [16–18]), there
should be some critical exponents associated to �c. If none of
the fibers fail ����L�, we cannot define order parameter,
susceptibility, relaxation time, etc., which show critical be-
havior of the failure dynamics. Therefore, at �c the bundle
should be in a partially broken (stable) state. Putting the
condition �c��L in Eq. �8�, we get the upper bound of the
lower cutoff: �L�1/2. We can verify that for �L�1/2 the
recursion �Eq. �6�� does not give a stable fixed point except
U*=0. Also, putting �L�1/2 in fixed point solution �Eq.
�7��, we get U*�1, which is unrealistic. Therefore the criti-
cal strength of the ELS model is bounded by an upper limit:
�c�1/2. We present graphical solutions �Fig. 2� of the re-
cursion relation �Eq. �6�� for �L�1/2 �a� and �L�1/2 �b�.
Clearly, we cannot get a fixed point �Ut+1=Ut� in �b�.

From the solution �Eq. �7�� we can obtain the order pa-
rameter �O�, susceptibility ���, and relaxation time �	�
�16–18� of the failure process:

O = U*��� − U*��c� � ��c − ��−
, 
 =
1

2
�9�

� = �dU*���
d�

� � ��c − ��−�, � =
1

2
�10�

	 � ��c − ��−�, � =
1

2
. �11�

Therefore the variation of order parameter, susceptibility, and
relaxation time remain unaffected by the presence of lower
cutoff.

B. The instant failure situation in weakest fiber breaking
approach

Now, we follow the weakest fiber breaking approach
�3,9�: The applied load is tuned in such a way that only the
weakest fiber �among the intact fibers� will fail after each

FIG. 1. The uniform density of fiber strength having a lower
cutoff ��L�.
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step of loading. We first find out the extreme condition when
the whole bundle fails instantly after the first fiber ruptures.
As the strength thresholds of N fibers are uniformly distrib-
uted within �L and 1, the weakest fiber fails at a stress �L

�for large N�. After this single fiber failure, the load will be
redistributed within intact fibers resulting in a global stress
� f =N�L / �N−1�. Now, the number of intact fibers having
strength threshold below � f is

NP�� f� = N�
�L

�f

���th�d�th =
N�� f − �L�

�1 − �L�
. �12�

The stress redistribution can break at least another fiber if
NP�� f��1 and this “second” failure will trigger another fail-
ure and so on. Thus the successive breaking of fibers cannot
be stopped until the complete collapse of the bundle. Clearly,
there cannot be any fixed point �critical point� for such “in-
stant failure” situation. Putting the value of � f we get

N� N�L

N − 1
− �L�

�1 − �L�
� 1, �13�

which gives

�L �
�N − 1�

�2N − 1�
. �14�

For large N limit, the above condition can be written as �L
�1/2. Therefore, the condition to get a fixed point in the
failure process is �L�1/2.

We can also calculate how many steps are required to
attain the final catastrophic failure for �L�1/2. Let us as-
sume that we have to increase the external load x times be-
fore the final failure. At each step of such load increment
only one fiber fails. Then after x steps the following condi-
tion should be fulfilled to have a catastrophic failure:

N�
�i

�i�1+1/�N−x��

���th�d�th � 1, �15�

where

�i = �L +
x�1 − �L�

N
. �16�

The solution gives

x =
N

2
�1 −

�L

1 − �L
� . �17�

The above equation suggests that at �L=1/2 , x=0. But in
reality we have to put the external load once to break the
weakest fiber of the bundle. Therefore, x=1 for �L�1/2
�Fig. 3�. To check the validity of the above calculation we

FIG. 2. The graphical solutions of Eq. �6�: Straight lines repre-
sent the fixed points. In �a� �L=0.3,�c=0.357; solid curve, ���c;
dashed line, �=�c, dotted line, ���c. In �b� �L=0.51; solid curve,
�=0.52; dashed line, �=0.55.

FIG. 3. The total step of load increase �until final failure� is
plotted against �L for an ELS model having 50 000 fibers. The
dotted line represents the analytic form �Eq. �17��, triangles are the
simulated data for a strictly uniform strength distribution, and the
circles represent the data �averages are taken for 5000 samples� for
a uniform on average distribution.
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take “strictly uniform” and uniform on average distributions
of fiber strength. In our strictly uniform distribution the
strength of the kth fiber �among N fibers� is �L+ �1
−�L�k /N. We can see in Fig. 3 that the strictly uniform dis-
tribution exactly obeys the analytic formula �17� but the uni-
form on average distribution shows slight disagreement
which comes from the fluctuation in the distribution function
for finite system size. This fluctuation will disappear at the
limit N→
 where we expect perfect agreement.

C. Avalanche size distribution

During the failure process “avalanches” of different size
appear where simultaneous failure of a number of fibers is
termed as an “avalanche.” To investigate whether the ava-
lanche size distributions depend on the lower cutoff or not,
we go for a numerical study. The result �Fig. 4� demands that
for small avalanche sizes the distributions show a gradual
deviation �depends on �L� from the mean-field result, al-
though the big avalanches still follow the mean-field power
law �exponent value −5/2� as analytically derived by Hem-
mer and Hansen �9�. We have checked this result for several
system sizes and the above feature remains invariant. We
should mention that according to Eqs. �37�–�39� of Ref. �9�,
the analytic treatment is valid for �L�1/2 as 1/2 is the
maximum �upper limit of the integration in Eq. �37�� of the
stress-strain curve. The presence of �L cuts out the lower part
of the stress-strain curve where the small avalanches are
most likely to happen. Therefore, smaller avalanches get re-
duced in number with the increase of �L �Fig. 4�. At the limit
�L→1/2, the avalanche distributions seem to follow a new
power law with exponent −3/2, which can be explained as
follows: The fluctuation in threshold distribution gives rise to
a scenario like the unbiased random walk of the bundle’s
strength around the maximum 1/2, which in turn results in
exponent −3/2 in avalanche distribution �12�.

III. LLS MODEL

A. The instant failure situation

Now we consider the LLS model with uniform fiber
threshold distribution having a lower cutoff �L �Fig. 1�. We
shall present a probabilistic argument to determine the upper
limit of �L, beyond which the whole bundle fails at once.
Following the weakest fiber breaking approach, the first fiber
fails at an applied stress �L �for large N�. As we are using
periodic boundary conditions, the n nearest neighbors �n is
the coordination number� bear the terminal stress of the fail-
ing fiber and their stress value rises to � f =�L�1+1/n�. Now,
the number of nearest neighbors �intact� having strength
threshold below � f is �nn� fail=nP�� f� �see Eq. �12��. Putting
the value of P�� f� and � f we finally get

�nn� fail =
��L�

�1 − �L�
. �18�

If �nn� fail�1, then at least another fiber fails and this is
likely to trigger a cascade of failure events resulting in com-
plete collapse of the bundle. Therefore, to avoid the instant
failure situation we must have �nn� fail�1, from which we
get the upper bound of �L:

�L �
1

2
. �19�

As the above condition does not depend on the coordination
number n, at any dimension the whole bundle is likely to
collapse at once for �L�1/2. It should be mentioned that the
LLS model should behave almost like the ELS model at the
limit of infinite dimensions and therefore the identical bound
�of �L� in both the cases is not surprising �see the Appendix�.
We numerically confirm �Fig. 5� the above analytic argument
�Eq. �19�� in one dimension. When the average step value
goes below the 1.5 line, one step failure is the dominating
mode then. We can find out the extreme limit of �L when all

FIG. 4. The avalanche size distributions for different values of
�L : N=50 000 and averages are done over 10 000 sample. We have
drawn two power laws �dotted lines� as reference lines to compare
our numerical results.

FIG. 5. Numerical estimate of the upper bound of �L in the LLS
model: For �L�0.5 the average step values go below 1.5, i.e., the
bundle fails at one step in most of the realizations.
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the nearest neighbors fail after the weakest fiber breaks. Then
the LLS bundle collapses instantly for sure. Setting �nn� fail

=n we get the condition �L�n / �1+n�, where the stress level
of all the nearest neighbors crosses the upper cutoff 1 of the
strength distribution. Clearly such failure is very rapid �like a
chain reaction� and does not depend on the shape of the
strength distributions, except for the upper cutoff. Also as n
increases �ELS limit�, �L for instant failure assumes the
trivial value 1. Similar sudden failure in the FBM has been
discussed by Moreno et al. �25� in the context of a “one-
sided load transfer” model, which is different from the true
LLS model we consider here.

B. Strength of the bundle

The local load sharing �LLS� scheme introduces stress
enhancement around the failed fiber, which accelerates dam-
age evolution. Therefore, a few isolated cracks can drive the
system toward complete failure through growth and coales-
cence. The LLS model shows zero strength �for fiber thresh-
old distributions starting from zero value� at the limit N
→
, following a logarithmic dependence on the system size
�N� �19–21�. Recently Mahesh et al. �26� have proposed a
probabilistic method of finding the asymptotic strength of
bundles in the LLS mode. Now for threshold distributions
having a lower cutoff ��L�, the ultimate strength of the
bundle cannot be less than �L. For such a uniform distribu-
tion �Fig. 1�, we perform numerical simulations to investi-
gate the system size variation of the bundle’s strength. We
observe �Fig. 6� that as �L increases the quantity �strength
-�L� approaches zero following straight lines with 1/N, but
the slope gradually decreases, which suggests that the system
size dependence of the strength gradually becomes weaker.

C. Avalanche size distribution

Due to faster crack growth, the LLS model shows differ-
ent avalanche statistics than that of the ELS model. The nu-

merical study of Hansen and Hemmer �9� suggests an appar-
ent power law having exponent −4.5 in the avalanche
distribution. Later, Kloster et al. �10� have shown analyti-
cally that for flat �uniform� distribution the LLS model does
not have any power law asymptotics in avalanche statistics.
We numerically study the avalanche distribution in the LLS
model for different �L values �Fig. 7�. We observe a similar
deviation �lowering� of the distribution function for the
smaller avalanche sizes as in the case of the ELS model.
Also, the number of different avalanches gets reduced �the
tail of the distribution disappears� with the increase of �L.
This occurs due to damage localization �27�, which ensures
faster collapse of the bundle. In Fig. 7 we can see that for
�L=0.5, avalanches of size 1 are the only possibility before
total failure and their count is always less than 1, which
clearly indicates the dominance of the instant failure situa-
tion.

IV. CONCLUSION

A lower cutoff in fiber threshold distribution excludes the
presence of very weak fibers in a bundle. The weaker fibers
mainly reduce the strength of a bundle. But, in practical pur-
poses, we always try to build stronger and stronger materials
�ropes, cables, etc.� from the fibrous elements. Therefore this
situation �exclusion of weaker fibers� is very realistic. The
failure dynamics of the ELS model almost remains un-
changed in the presence of such lower cutoff ��L�, whereas
the avalanche size distributions show a systematic deviation
�for small avalanches� from the mean field nature. At the
limiting point ��L→1/2�, we get a new power law �expo-
nent −3/2� in avalanche distribution which can be explained
from random walk statistics �12�. In the LLS model the ava-
lanche statistics show a drastic change with the increase of
�L. In both the models, the lower cutoff becomes bounded by
an upper limit ��L�1/2� beyond which the whole bundle

FIG. 6. The �strength -�L� is plotted against 1 /N for different �L

values: 0.3 �square�, 0.35 �circle�, 0.4 �up triangle�, 0.45 �down
triangle�, and 0.5 �star�. All the straight lines approach 0 value as
N→
.

FIG. 7. Avalanche size distribution for several �L’s in the LLS
model: N=20 000, averages are taken over 10 000 samples. The
number of different avalanches decreases with the increase of �L

value.
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fails at once, which has important consequences: It seems
that the bundles show elastic-like response �17� up to �L
=1/2, above which they become perfectly brittle. We ob-
serve that the “weakest fiber breaking approach” �3,9� and
the “equal load increment approach” �16,17� give similar re-
sults �in the ELS mode�. In the equal load increment method,
sometimes more than one fiber fails at the time of loading
and this affects the whole failure dynamics, whereas the
weakest fiber breaking approach ensures the single fiber
�weakest among the intact fibers� failure at each step of load-
ing. We consider the equal load increment method to be more
practical from the experimental point of view. This approach
helps to construct the recursion relations �16,17�, which in
turn show critical behavior �17,18� of the failure process.
The instant failure situation is not limited to uniform thresh-
old distribution, rather it is common in any type of distribu-
tion �see the Appendix�. It seems that the instant failure rep-
resents the binary states of the bundle: intact �1 or high� and
completely broken �0 or low� and here the bundle behaves
like a classical switch in response to external load.
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APPENDIX

1. Case I: Linearly increasing density of fiber strength

We consider a bundle of fibers with linearly increasing
density of strength �Fig. 8� having the normalized form

���th� =
2�th

1 − �L
2 , �L � �th � 1. �A1�

We want to find out the bound of �L beyond which instant
failure occurs in both ELS and LLS models.

a. ELS model

Following the weakest fiber breaking approach, the con-
dition for “instant failure” is

N�
�L

�L�1+1/�N−1��

���th�d�th � 1, �A2�

which gives

�L
2 �

N − 1

3N − 1
. �A3�

Therefore, the bound �beyond which one-instant failure will
occur� of the lower cutoff comes to be �L�1/
3 for large N
limit.

b. LLS model

The condition for instant failure for the LLS model is

n�
�L

�L�1+1/n�

���th�d�th � 1, �A4�

where n is the coordination number or the number of nearest
neighbors. This gives

�L
2 �

1

�3 +
1

n
� . �A5�

Now, as the dimension of the system increases, n goes to-
wards infinity. Hence the above condition gives the bound of
the lower cutoff as �L�1/
3, which is identical to that in
the equivalent ELS case.

2. Case II: Linearly decreasing density of fiber strength

Next we consider a bundle of fibers having linearly de-
creasing density of strength �Fig. 9� with the normalized
form

���th� =
2�1 − �th�
�1 − �L�2 , �L � �th � 1. �A6�

FIG. 8. The linearly increasing density of fiber strength having a
lower cutoff ��L�.

FIG. 9. The linearly decreasing density of fiber strength having
a lower cutoff ��L�.
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a. ELS model

Following Eq. �A2�, the condition for instant failure is

�L �
N − 1

3N − 1
, �A7�

which sets the bound of the lower cutoff to �L�1/3.

b. LLS model

Following Eq. �A4�, the condition for instant failure is

2�L

�1 − �L�2�1 − �L −
�L

2n
� � 1, �A8�

which reduces to 2�L / �1−�L��1 for n→
 and sets the
bound of the lower cutoff to �L�1/3. Again this is identical
to that in the ELS case.
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